
Research Article
An External Archive-Based Constrained State Transition
Algorithm for Optimal Power Dispatch

Xiaojun Zhou ,1 Jianpeng Long ,1 Chongchong Xu,1 and Guanbo Jia 2

1The School of Information Science and Engineering, Central South University, Changsha 410083, China
2The Institute of Electronics, Communications and Information Technology (ECIT), the School of Electronics, Electrical Engineering
and Computer Science (EEECS), Queen’s University Belfast, Belfast BT7 1NN, UK

Correspondence should be addressed to Guanbo Jia; g.jia@qub.ac.uk

Received 13 July 2018; Accepted 18 September 2018; Published 3 January 2019

Guest Editor: Zhile Yang

Copyright © 2019 Xiaojun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes an external archive-based constrained state transition algorithm (EA-CSTA) with a preference trade-off
strategy for solving the power dispatch optimization problem in the electrochemical process of zinc (EPZ). The optimal power
dispatch problem aims to obtain the optimal current density schedule to minimize the cost of power consumption with some
rigorous technology and production constraints. The current density of each production equipment in different power stages is
restricted by technology and production requirements. In addition, electricity price and current density are considered
comprehensively to influence the cost of power consumption. In the process of optimization, technology and production
restrictions are difficult to be satisfied, which are modeled as nonconvex equality constraints in the power dispatch optimization
problem. Moreover, multiple production equipment and different power supply stages increase the amount of decision variables.
In order to solve this problem, an external archive-based constrained state transition algorithm (EA-CSTA) is proposed. The
external archive strategy is adopted for maintaining the diversity of solutions to increase the probability of finding the optima of
power dispatch optimization problem. Moreover, a preference trade-off strategy is designed to improve the global search
performance of EA-CSTA, and the translation transformation in state transition algorithm is modified to improve the local
search ability of EA-CSTA. Finally, the experimental results indicate that the proposed method is more efficient compared with
other approaches in previous papers for the optimal power dispatch. Furthermore, the proposed method significantly reduces
the cost of power consumption, which not only guides the production process of zinc electrolysis but also alleviates the pressure
of the power grid load.

1. Introduction

Hydrometallurgical zinc is the main production approach of
zinc, accounting for more than 80% of zinc production in the
world [1]. The electrochemical process of zinc plays an
important role in the hydrometallurgical process of zinc
[2]. The power consumption decided by current efficiency
and cell voltage is an important economic indicator of elec-
trolytic zinc process. In the process, zinc is deposited in the
zinc sulfate solution under the action of direct current.
Current efficiency and cell voltage are influenced by current
density directly. If the current density is too low, the current
efficiency will drop sharply, and zinc deposited on cathodes
will be dissolved [3]. If the current density is too high, the

temperature of the electrolytic cell will rise and impurities
in the solution will increase. At the same time, the increased
current density will definitely lead to high cell voltage, which
affects the power consumption. The relationship between
current density and current efficiency is nonlinear, which
may not cause current efficiency to increase as expected. In
addition, the current density is also limited by the maximum
current strength that the plate can withstand. Due to the
complexity of zinc electrolysis process, it is difficult to find
a suitable current density for the optimal power dispatch.

Previously, power can be supplied at a constant current
density without changing the price of electricity. However,
the power sector adopts time-based pricing [4], which means
that the price of electricity is high at the peak of electricity
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consumption, while low at the valley of electricity consump-
tion. If the production process is running at the lowest price
period every day, there is no doubt that the daily output of
zinc will not be satisfied. It is the same on the basic electricity
price period. If the production process is running at the high-
est price every day, the daily output of zinc will be satisfied.
But, this does not achieve the goal of minimizing the cost
of power consumption. Our idea is to reasonably allocate
the power consumption at different electricity price periods
to minimize the cost of power consumption. Therefore, it is
necessary to find an optimal power dispatch in different
pricing periods [5]. The optimal power dispatch based on
time-sharing price counting policy can be formulated as a
constrained optimization problem (COP), which is to min-
imize electricity bills when production and technology con-
straints are satisfied.

In this paper, the main challenges of optimizing power
dispatch are given as follows.

(i) Nonconvex equality constraint function: in the
hydrometallurgical process of zinc, the equality con-
straint function is related to the daily output of zinc,
which need to satisfy consumer demand. Due to the
small feasible search space, it is difficult to satisfy
equality constraint in the search process

(ii) Multiple decision variables: the number of decision
variables is decided by the number of production
equipment and power supply stages. The value of
decision variable depends on not only the electricity
price of different periods but also the production
and technology requirements

In the literatures, many methods have been designed for
solving optimal power dispatch in the zinc electrolysis pro-
cess. Yang et al. [5, 6] proposed backpropagation and Hop-
field neural network for optimal power dispatch. Li and Gui
[4] solved power dispatch optimization problem by an
improved particle swarm optimization algorithm. Gui et al.
[7] designed a hybrid particle swarm algorithm to solve the
power dispatch optimization problem. Han et al. [8] tackled
this problem by two-stage constrained state transition algo-
rithm. Although these methods can obtain good solutions,
the cost of power consumption can be lower by further opti-
mizing the current density. Based on the study of those liter-
atures, the optimal solution can be improved from the daily
output of zinc and the current density of each production
equipment in different power supply stages.

The optimal power dispatch in EPZ can be formulated as
a constrained optimization problem (COP). Some basic tech-
niques have been applied to solve COPs, such as adaptive
penalty function technique [9], adaptive trade-off model
[10], and Deb’s rules [11]. Hybrid techniques in which two
or more strategies are integrated to solve COPs have been
designed, such as Deb-penalty technique [8]. Improved ver-
sion techniques have been applied for solving COPs, like
improved (μ + λ)-constrained differential evolution [12]
and improved adaptive trade-off model [13]. However, these
techniques rarely consider the diversity of solutions from the
perspective of feasible and infeasible solutions. Moreover, it

is difficult to find a good solution since the power dispatch
model contains the nonconvex equality constraint and multi-
ple decision variables. So maintaining the diversity of feasible
solutions and infeasible solutions can be instructive to find a
better solution.

In this paper, the constrained state transition algorithm
based on external archive with preference trade-off strategy
is proposed for the power dispatch problem in electrolytic
zinc process. The external archive-based constrained state
transition algorithm (EA-CSTA) is different from the con-
strained state transition algorithm (CSTA) [8] on selecting
solutions. The CSTA selects only a current best solution
from a set of candidate solutions, while the EA-CSTA
adopts an external archive to store multiple potential solu-
tions. In addition, a novel constraint-handling technique,
called preference trade-off strategy, is proposed to select
solutions from both feasible and infeasible candidates. The
novelty and the main contributions of the paper can be
summarized as follows.

(1) An external archive strategy is designed to save mul-
tiple potential feasible and infeasible solutions. The
EA-CSTA achieves the state transition by selecting
several potential solutions saved in an external
archive, which increases not only the diversity of
solutions but also the probability of finding the global
solution. In order to expand the search scope of the
candidate solutions, translation transformation in
STA [14] is modified to share information among
potential solutions

(2) The preference trade-off strategy in the proposed
method contains both preference and trade-off.
Firstly, it is able to adjust the number of feasible
and infeasible solutions. Secondly, strategies are dif-
ferent in dealing with feasible and infeasible candi-
dates, which avoid the direct comparison of feasible
and infeasible candidates. Also, it increases the diver-
sity of these selected solutions in an auxiliary manner.
Some preference strategies are adopted to select solu-
tions, such as adding a penalty factor to normaliza-
tion. The normalization is capable of dealing with
the different scale between cost of power consump-
tion and production constraints

(3) The proposed method is successfully applied to solve
the power dispatch optimization problem in EPZ that
can bring significant economic profits to the metal-
lurgy industry. In addition, it is conductive to relieve
the pressure not only on the power grid but also on
the peak power consuming period of power industry

The remainder of the paper is organized as follows.
Section 2 introduces the preliminary knowledge of power
dispatch model and constraint-handling techniques. In Sec-
tion 3, the proposed constrained STA with external archive
and preference trade-off strategy is elaborated. Results and
discussions are presented in Section 4. Finally, Section 5
draws a conclusion of this paper and gives the possible
future work.
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2. Preliminaries

In this section, the power dispatch model is expressed in
detail. It contains the objective function which is minimizing
the cost of power consumption, technology, and production
constraints. Then, some classical and effective constraint-
handling techniques are described.

2.1. Problem Formulation. The electrochemical process of
zinc is a considerable large amount of power consumption
process, which accounts for 80% of the total electrical energy
consumption in the hydrometallurgy process of zinc. To
encourage customers to consume more power in the valley-
load period and less power in the peak-load period, the power
sector adopts time-based pricing strategy as shown in
Table 1. It means that the price of electricity is high at the
peak of electricity consumption, while low at the valley of
electricity consumption. The cost of power consumption will
be decreased in the case that the electrochemical process of
zinc consumes a small amount of electricity in the period of
high price and vice versa. However, if the current density is
too high or too low, it will not only affect the power con-
sumption but also influence the product quality. To prevent
low quality of product and excessive power consumption, it
is essentially desired to seek for suitable current density in
different pricing periods.

Fc = 〠
Nt

i=1
PWi × Ti × Pi + Fc0, 1

where PWi (kW) decided by voltage and current is the power
consumption of ith price period, which can be formulated as
(2), Ti (h) is the duration of ith price, Pi is the electricity price
(RMB/kW·h) at ith period, and Nt is the number of the price
periods; Fc0 is the basic tariff charge of electrochemical pro-
cess of zinc.

PWi = 〠
Ne

j=1
Vij × Iij × Ncj, 2

where Vij (V) and Iij (A) are the voltage and current of ith
price period in the jth plant, respectively, Ncj is the number
of cells in the jth plant, and Ne is the number of plants.

Vij = a0 + a1 × Cdij,
Iij = Np j × S × Cdij,

3

where a0 and a1 are obtained by recursive least squares
method, Cdij (A/m2) is the current density ith price period
in the jth plant, Npj denotes the number of plates in a cell
in the jth plant, and S (m2) is the area of negative plate.

In order to satisfy the techniques and production require-
ments, the optimal goal should be subject to some con-
straints, such as the daily yield and the current density. The
detailed daily yield constraints can be expressed as follows:

h Cd = 〠
Nt

i=1
〠
Ne

j=1
q × Iij × Ncj × Eij × Ti =G, 4

Eij = b0 + b1 × Cdij + b2 × Cd2ij + b3

× Cd3ij + b4 × Cd4ij,
5

where h Cd and G denote the practical daily quantity of
zinc (t) and expected goal of daily yield, respectively, q is
the electrochemical equivalent of zinc (q = 1 2202 g/A ⋅ h),
Eij is the current efficiency of ith price period in the jth
plant, and b0, b1, b2, b3, and b4 are obtained by recursive
least squares method. Technological constraints can be
presented as follows:

Cdijmin
≤ Cdij ≤ Cdijmax

6

Here, Cdij denotes the current density of ith price
period in the jth plant.

To summarize, the power dispatch optimization model
based on the time-sharing policy can be presented as follows.

min  Fc Cd = 〠
Nt

i=1
PWi × Ti × Pi + Fc0

s t   h Cd = 〠
Nt

i=1
〠
Ne

j=1
q × Iij × Ncj × Eij × Ti =G,

7

where

PWi = 〠
Ne

j=1
Vij × Iij × Ncj,

Iij = Np j × S × Cdij,
Vij = a0 + a1 × Cdij,

Eij = b0 + b1 × Cdij + b2 × Cd2ij + b3 × Cd3ij + b4 × Cd4ij,
Cdijmin

≤ Cdij ≤ Cdijmax

8

2.2. Constraint-Handling Techniques. Up to now, there are a
large number of techniques for dealing with constraints [15].
In the following part, some common constraint-handling
techniques are presented in detail.

Table 1: Time-based pricing for the power consumption.

Price Period Duration

1.6B
7:00–11:00, 15:00–18:00 7

18:00–22:00 4

1.0B 11:00–15:00, 22:00–23:00 5

0.7B 23:00–7:00 8

B is the basic price (0.5627RMB/kW ⋅ h).
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2.2.1. Penalty Function Technique. Penalty function tech-
nique [16] is one of the most common way to convert con-
strained optimization problems (COPs) into unconstrained
optimization problem. The formula of penalty function can
be indicated as follows:

ϕ x = f x + 〠
q

i=1
μiGi x + 〠

m

j=1
μjH j x , 9

where ϕ x is the fitness function which contains the objec-
tive function f x and constraint violation Gi x ,Hj x ,
and μi and μj are the penalty factors of ith and jth con-
straint violations. The constraint violation can be described
as follows:

Gi x =max 0, gi x k, i = 1,… , q,

Hj x =max 0, hj x − ϵ
k, j = 1,… ,m,

10

where q and m are the number of inequality and equality
constraints, hj x is the jth equality constraint, such as the
h Cd in (4), gi x is the ith inequality constraint, ϵ is the
constraint tolerance, and k is normally 1 or 2.

2.2.2. Deb’s Rules. Deb’s rules originally proposed by Deb
[17] is effective for coping with constraints. In this strategy,
two solutions can be compared according to the following
criteria:

(i) If two solutions are feasible, the one with a better
objective function value is chosen

(ii) If two solutions contain a feasible and an infeasible
solution, the feasible one is chosen

(iii) If two solutions are infeasible, the one with lower
constraint violation is chosen

2.2.3. Adaptive Trade-Off Model. Adaptive trade-off model
is a novel constraint-handling technique proposed by Wang
et al. [10]. In this strategy, the current generated individuals
are divided into three categories according to the feasibility
proportion (fp) which is the ratio of the number of feasible
individuals to the total number of individuals. The potential
individuals used for generating offsprings can be selected
as follows.

(i) fp=0, nondominated individuals represent the
Pareto optimal set [18] of the population, which
can be identified in the population as the potential
solutions. The top k potential solutions can be
selected from the Pareto front

(ii) fp=1, individuals are sorted according to their
values of objective function. The top k individuals
can be selected as potential solutions to generate
offsprings

(iii) 0 <fp< 1, population is divided into a feasible and an
infeasible group. The objective function value of an
infeasible individual can be converted as follows:

F x =max f p ∗ fmin + 1 − f p ∗ fmax, f x , x ∈ Z, 11

where Z is the infeasible group and fmin and fmax are
the minimum and maximum objective function value of
solutions in the feasible group, respectively. Then, the
sum value of normalized objective function value and con-
straint violation of each solution is compared and sorted to
select the top k individuals as the potential solutions to
generate offsprings.

3. Constrained State Transition Algorithm
Based on External Archive

As previously mentioned, due to the complexity of the
power dispatch optimization problem, intelligent or evolu-
tionary algorithms with constraint-handling techniques are
introduced to deal with the optimal power dispatch in the
literatures. Those solutions of the optimal power dispatch
obtained from literatures can be improved from daily output
of zinc and current density. In this paper, we propose the
constrained state transition algorithm based on external
archive and preference trade-off strategy for the optimal
power dispatch.

3.1. Modified State Transition Algorithm. In recent years,
state transition algorithm (STA) [19] as a novel stochas-
tic intelligent algorithm for global optimization has been
broadly applied to different fields, such as image segmenta-
tion [20], fractional-order PID controller tuning [21], copper
removal and goethite process in the hydrometallurgical pro-
cess of zinc [22, 23], sensor network localization [24], and
other fields [25, 26]. The inspiration of STA is derived from
the concepts of state and state transition. A solution is con-
sidered as a state and the update of a solution is treated as
the process of state transition. The relationship of the current
state and the next state can be formulated as follows:

sk+1 = Aksk + Bkuk,
yk+1 = f sk+1 ,

12

where sk ∈ℝn represents the current state, which is a
candidate solution, sk+1 ∈ℝn×n is an updated state, and it
is a candidate solution set, Ak and Bk stand for state
transition matrices, uk is a function of sk and historical
solution, f is the evaluation function in the continuous STA
for constraint optimization problems, and yk+1 is the func-
tion value of sk+1.

In order to solve optimization problems, four state tran-
sition operators of continuous STA are designed, which are
rotation, translation, expansion, and axesion transforma-
tions. The original translation transformation is designed
for a line search with current best solution and historical
solution. Due to the difficulty of finding feasible space of
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optimal power dispatch, we not only need to maintain the
diversity of solutions but also need to utilize the information
in potential solutions. However, the original translation
transformation is invalid if the current best solution and
the historical solution are the same. Thus, a modified transla-
tion transformation is designed to share information in two
potential solutions and keep the validity of this operator.
The modified translation transformation can be expressed
as follows.

sk+1 = sk + βRt sk − sd , 13

where β is the translation factor, which is a positive con-
stant, Rt ∈ℝis a random variable distributed uniformly in
the range of 0, 1 , and sd is a solution randomly chosen from
the external archive.

3.2. Proposed External Archive Scheme. In this part, we adopt
an external archive scheme to keep diversity for potential
solutions and avoid dropping into local optimum. The differ-
ences between EA-CSTA and STA can be summarized as fol-
lows: (1) An external archive is designed for saving potential
solutions. (2) The STA achieves the state transition by select-
ing only one best solution, while EA-CSTA designs state
transition by selecting multiple potential solutions. EA-
CSTA increases the diversity of solutions and the proportion
of finding the global optimum.

The illustration of saving potential solutions by external
archive is shown in Figure 1. The removed solutions are
replaced by the new potential solutions which are selected
by preference trade-off strategy from both the current gener-
ated candidates and the old potential solutions selected in
the last iteration. This operation takes into account both
superiority and diversity of solutions, which are two basics
for finding global optimum.

3.3. Preference Trade-off Strategy of EA-CSTA. The proposed
preference trade-off strategy includes two parts, trade-off
and preference scheme, when dealing with rigorous con-
straints in the power dispatch optimization problem. In the
proposed strategy, the trade-off scheme is used to balance
the number of potential feasible and infeasible solutions to
avoid early-maturing, and the preference scheme is used to
select the potential solutions from feasible and infeasible
candidates, respectively.

Firstly, a trade-off scheme is designed to calculate the
number of potential feasible (feasi_num) and infeasible

solutions (infeasi_num). The feasi_num and infeasi_num
can be calculated as follows.

f easi num =
SA × 1 − f p , 0 < f p < 1,
SA, f p = 1,

inf easi num =
SA × f p, 0 < f p < 1,
SA, f p = 0,

14

where SA is a constant, which is the number of potential solu-
tions saved in the external archive and f p is the ratio of fea-
sible candidates in the total candidates. If the number of
infeasible candidates is larger than that of feasible candidates,
it is difficult to find a good feasible solution. Therefore, more
feasible solutions should be selected to guide candidates into
feasible region to find a better feasible solution. In contrary, if
the number of feasible candidates is larger than that of infea-
sible candidates, it is easy to mature in the early period and
drop into the local optimum. Therefore, more infeasible solu-
tions with lower objective function value should be selected
to guide candidates to find better solutions and avoid falling
into the local optimum.

Secondly, in the selection of feasible solutions, a prefer-
ence scheme is adopted to find several feasible potential solu-
tions. Feasible candidates are sorted in ascending order of
their objective function values. The top feasi_num solutions
are saved in the external archive as part of potential solutions.

Thirdly, in the selection of infeasible solutions, another
preference scheme, which is called normalized penalty func-
tion strategy, is adopted to find several infeasible potential
solutions. The normalized penalty function can be described
as follows:

f nor x = f x −min f x
max f x −min f x , x ∈ Z, 15

Gnor x = G x −min G x
max G x −min G x , x ∈ Z, 16

Fnor x = f nor x + μGnor x , 17

where f nor x and Gnor x denote the normalized objective
function value and the normalized constraint violation,
respectively, Fnor x is the sum value of normalized objective
function value and normalized constraint violation with pen-
alty factor, Z is a set of infeasible candidates, and μ is a con-
stant coefficient, called the penalty factor. There are two types
of candidates which contain infeasible solutions: (1) there is
no feasible candidate in the current candidates; it is vital to
find feasible space. In this case, the top infeasi_num candi-
dates with low constraint violation are preferred, and the
penalty factor is greater than 1. (2) there exist both feasible
and infeasible candidates; it is vital to find a better feasible
solution. In this case, the top infeasi_num candidates with
low objective function values are preferred, and the penalty
factor is less than or equal to 1.

The illustration of preference trade-off strategy is shown
in Figure 2. Then, in order to illustrate the normalized

External
archive

New potential
solutions

Removed
solutions

Figure 1: Schematic diagram to illustrate the process of saving
potential solutions in the external archive.
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penalty strategy with different penalty factors in selecting
infeasible solutions, an example is presented in Figure 3.

As shown in Figure 3, the left form is the original data,
and the right two forms are the normalized data obtained
by normalized penalty strategy with different penalty factors.
f and G are the objective function value and constraint viola-
tion, respectively. Fnor is the sum value of the normalized
objective function value and constraint violation with the
function of penalty factor. The red, blue, and green represent
the red, blue, and green points in Figure 4, respectively. The
red marked values in the right two forms are the five selected
candidates by sorting Fnor. The marked values of the first
form on the right give a preference to the candidates with
lower constraint violation, while the second form on the right
gives a preference to the candidates with lower objective
function value.

Figure 4 shows the results obtained by normalized pen-
alty strategy with different penalty factors. The circled points
in the left subfigure represent the normalized penalty strategy

with higher penalty factor. Apparently, a preference is given
to those solutions with less constraint violation which can
guide candidates to come into feasible region rapidly.
The circled points in the right subfigure show solutions
selected by normalized penalty strategy with lower penalty
factor. A preference is given to those solutions with lower
objective function value which can guide candidates find
better feasible solutions.

3.4. The Framework of EA-CSTA. The proposed constraint-
handling technique, preference trade-off strategy, can be con-
sidered as a criterion to choose potential solutions, which is
incorporated into EA-CSTA for dealing with COPs. The
main procedure of EA-CSTA is given in Algorithm 1.

SA represents the number of selected potential solu-
tions which are stored into external archive. archive saves
the potential solutions selected by preference trade-off

�휇1

Min

f

G0
Min

f

G0

�휇2

Figure 4: Schematic diagram to illustrate result comparison by
normalized penalty strategy with different penalty factors in
selecting solutions.

Red

Blue

Green

(5.0, 0.9)
(f , G)

(3.0, 1.5)
(1.7, 2.0)
(1.3, 3.5)
(4.3, 2.7)
(2.2, 3.0)
(3.5, 3.8)
(2.0, 3.7)
(1.1, 4.7)

�휇 1

�휇
2

(5.0, 0.9) , 1.000 
(3.0, 1.5) , 0.645
(1.7, 2.0) , 0.443
(1.3, 3.5) , 0.736
(4.3, 2.7) , 1.294
(2.2, 3.0) , 0.835
(3.5, 3.8) , 1.379
(2.0, 3.7) , 0.968
(1.1, 4.7) , 1.000

(5.0, 0.9) , 1.000
(3.0, 1.5) , 0.678
(1.7, 2.0) , 0.501
(1.3, 3.5) , 0.872
(4.3, 2.7) , 1.389
(2.2, 3.0) , 0.945
(3.5, 3.8) , 1.531
(2.0, 3.7) , 1.115
(1.1, 4.7) , 1.200

(f , G ) , Fnor

(f , G ) , Fnor

Figure 3: Schematic diagram to illustrate the original data and the
normalized data.

Calculate the feasi_num
and infeasi_num

Strategy for selecting
infeasible candidates

Strategy for selecting
feasible candidates

Sort by the
objective

function value

Normalized
penalty function

strategy (�휇2)

Normalized
penalty function

strategy (�휇1)

fp fp= 0 ≠ 0

Figure 2: Schematic diagram to illustrate the preference trade-off
strategy. Input:

maxiter: the maximum number of iterations.
SE: the number of samples.
SA: the capacity of the external archive.
archive: the initial solutions.

Output:
Best∗: the optimal solution.

1: for iter= 1 to maxiter do.
2: if α< αmin then.
3: α← αmax.
4: end if.
5: if δ< δmin then.
6: δ← δmax.
7: end if.
8: archive ← expansion (archive, γ, SA, SE, ···).
9: archive ← rotation (archive, α, SA, SE, ···).
10: archive ← axesion (archive, δ, SA, SE, ···).
11: archive ← translation (archive, β, SA, SE, ···).
12: α← α/fc.
13: δ← δ/fc.
14: end for.
15: F_archive ← feval (funfcn, archive).
16: Best∗ ← sort(archive, F_archive).

Algorithm 1: Pseudocode of external archive-based STA for con-
strained optimization problems.
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strategy. γ, β, α, and δ are expansion, translation, rotation,
and axesion factors, respectively, and fc is decent efficient.
sort is an ascending order operation for F_archive to select
the best solution (Best∗) from archive. Its pseudocode can
be described in Algorithm 2.

State are candidates obtained from one of those four
transformation operators in EA-CSTA. feasi_num, infeasi_-
num, and fp can be calculated by the calculation function.
feasi_num and infeasi_num are the number of selected feasi-
ble and infeasible solutions, and fp is the feasibility propor-
tion. State can be divided into the feasi_x and infeasi_x by
the divide function, and feasi_x and infeasi_x are the feasible
and infeasible candidates. sort_feasi is an ascending order

operation for selecting the top feasi_num candidates as part
of solutions (S1). sort_infeasi_1 and sort_infeasi_2 are
ascending order operation for Fnor to select the top infeasi_-
num candidates as part of solutions (S2), and Fnor is pre-
sented in (17). archive is used to save these selected solutions.

4. Experimental Results and Analysis

The proposed EA-CSTA with preference trade-off strategy is
employed to solve the power dispatch optimization problem.
In this section, standard constrained benchmark problems
are used to verify the performance of the proposed EA-
CSTA. In addition, several experiments are designed to verify
the effectiveness of external archive-based modified STA and
the preference trade-off strategy. The optima of power dis-
patch optimization problem obtained by EA-CSTA are com-
pared with these algorithms, such as two-stage (Deb-penalty
technique) constrained state transition algorithm [8], called
CSTA, adaptive trade-off model with evolutionary strategy
[10], called ATMES, hybrid multiswarm particle swarm opti-
mization [27], called HMPSO, and tree-seed algorithm with
Deb’s rules [11], called CTSA. Parameter settings of EA-
CSTA are given in Table 2.

4.1. Standard Constrained Benchmark Problems. Some stan-
dard constrained optimization problems taken from [28]
are tested to verify the performance of EA-CSTA. Table 3
shows the details of the standard constrained benchmark
problems. The chosen test problems include different types
of objective functions (Fcn) and various kinds of constraints.
Constraints can be classified into four categories: linear
inequalities (LI), nonlinear inequalities (NI), linear equalities
(LE), and nonlinear equalities (NE). a is the number of con-
straints active at the optimal solution. The ratio of feasible
search region in the entire search region is represented as ρ,
and the number of decision variables is represented as n.
The results of 10 benchmark test functions obtained from
EA-CSTA are evaluated from several performance metrics:
the best, median, mean, and worst objective function values,
and the standard deviation in 30 independent runs. Each
independent run has 2000 iterations. The obtained results
are presented in Table 4.

Input:
State: the candidate solutions.
SA: the capacity of external archive.

Output:
archive: the selected potential solutions.

1: f← feval (funfcn, State).
2: [feasi_num, infeasi_num, fp] ← calculate(SA, f).
3: if 0 < fp< 1 then.
4: [feasi_x, infeasi_x, ···] ← divide(f, State, ···).
5: S1 ← sort_feasi (feasi_x, feasi_num, ···).
6: S2 ← sort_ infeasi_1(infeasi_x, infeasi_num, ···).
7: archive ← [S1; S2].
8: else.
9: if fp == 0 then.
10: infeasi_num ← SA.
11: S2 ← sort_infeasi_2(State, infeasi_num, ···).
12: archive ← S2.
13: else.
14: feasi_num ← SA.
15: S1 ← sort_feasi (State, feasi_num, ···).
16: archive ← S1.
17: end if.
18: end if.

Algorithm 2: Pseudocode of the preference trade-off strategy for
dealing with constraint functions.

Table 2: Parameter settings of EA-CSTA.

Parameter Value

αmax 1

αmin 1E-4

δmax 3

δmin 1E-4

maxiter 2000

γ 2

β 1

SE 30

μ1 1.2

μ2 1

SA 20

fc 2

Table 3: Summary of 10 benchmark functions.

Fcn n Function type ρ LI NI LE NE a

g01 13 Quadratic 0.0111% 9 0 0 0 6

g03 10 Polynomial 0.0000% 0 0 0 1 1

g04 5 Quadratic 52.1230% 0 6 0 0 2

g06 2 Cubic 0.0066% 0 2 0 0 2

g08 2 Nonlinear 0.8560% 0 2 0 0 0

g09 7 Polynomial 0.5121% 0 4 0 0 2

g11 2 Quadratic 0.0000% 0 0 0 1 1

g12 3 Quadratic 4.7713% 0 1 0 0 0

g13 5 Nonlinear 0.0000% 0 0 0 3 3

g23 9 Linear 0.0000% 0 2 3 1 6

7Complexity



As illustrated in Table 4, according to the success condi-
tion f x − f x∗ ≤ 0 0001 , the optima of almost all test
functions can be found by EA-CSTA, which shows the per-
formance of global search of EA-CSTA. Moreover, the

similar “best” and “worst” results in test functions reflect
the robustness of EA-CSTA. It is worth noting that some
benchmark test functions (g03, g11, g13, and g23) contain
equality constraints while the power dispatch optimization
problem has equality constraint as well.

4.2. Optimal Power Dispatch under Time-Sharing Price. At
present, we take the electrolytic zinc process in the Zhuzhou
Smeltery as an example. The purpose of this problem is to
minimize the cost of power consumption and satisfy the
technology and production constraints [6]. Figure 5 presents
the distributed architecture of optimal power dispatch con-
trol system (OPDCS) which is consist of an optimal power
dispatch system (OPDS) and a distributed rectifier control
system (DRCS). There are 2 industrial computers (IC1,
IC2) used to transfer signal with 7 direct digit controllers
(DDC1 to DDC7) by RS-485 connection. Seven direct digit
controllers operate on 29 rectifiers. The DRCS is mainly used
for controlling and real-time monitoring of the electrochem-
ical process of zinc (EPZA, EPZB).

The model of power dispatch optimization problem is
given in Section 2. Parameters in the model is presented
in Table 5.

Table 4: Statistical results obtained by EA-CSTA for 10 benchmark test functions over 30 independent runs.

Fcn Optimal Best Median Mean Worst St. dev

g01 −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 8.9926E-07

g03 −1.0005 −1.0005 −1.0005 −1.0005 −1.0005 1.0104E-07

g04 −30665.5538 −30665.5538 −30665.5538 −30665.5538 −30665.5537 2.4317E-04

g06 −6961.8139 −6961.8139 −6961.8139 −6961.8138 −6961.8135 1.0476E-04

g08 −0.0958 −0.0958 −0.0958 −0.0958 −0.0958 1.7681E-14

g09 680.6300 680.6301 680.6310 680.6310 680.6322 5.3803E-04

g11 0.7499 0.7499 0.7499 0.7499 0.7499 3.3850E-09

g12 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 1.0819E-15

g13 0.0539 0.0539 0.0539 0.0539 0.0539 3.0054E-10

g23 −400.0550 −399.9998 −399.9980 −399.9977 −399.9912 1.7320E-03

OPDS

IC1 IC2

DDC1——DDC4 DDC5——DDC7

Rectifier1——Rectifier19 Rectifier20——Rectifier29

EPZA
Series 1,2,3,4 of electrochemical cells

EPZB
Series 5,6,7 of electrochemical cells

RS-485 RS-485

Ethernet

DRCS

Figure 5: Schematic diagram to illustrate the distributed architecture of OPDCS.

Table 5: Parameter settings of the optimal power dispatch.

Parameter Value

bk [0.785037, 5.855E-4, 2E-6, 3.2094e-9, −1.9052E-12]
Nc j [240, 240, 246, 192, 208, 208, 208]

Npj [34, 46, 54, 56, 56, 57, 57]

j [1, 2, 3, 4, 5, 6, 7]

ak [2.76284, 0.00093]

i [1, 2, 3]

Fc0 164,000

Cdijmin 200

Cdijmax 650

G 960

S 1.13

8 Complexity



To verify the effectiveness of the preference trade-off
strategy, the proposed EA-CSTA combining preference
trade-off strategy is compared with EA-CSTA combining
Deb-penalty technique, and the detailed results are shown
in Tables 6 and 7. At the same time, to verify the effective-
ness of the modified STA, EA-CSTA combining Deb-
penalty technique is compared with CSTA combining Deb-
penalty technique, and the detailed results are shown in
Tables 7 and 8. As seen in Tables 6 and 7, the practical
daily output in Table 6 and the expected daily output
are the same, which means that the constraint in power

dispatch optimization problem is satisfied, and the practical
daily output in Table 7 is not satisfied. Furthermore, the cost
of power consumption represented in Table 6 is less than the
cost of power consumption represented in Table 7. The effec-
tiveness of preference trade-off strategy can be verified by
Tables 6 and 7. As seen in Tables 7 and 8, the cost of power
consumption shown in Table 7 is less than the cost of power
consumption represented in Table 8. The effectiveness of
modified STA can be verified by Tables 7 and 8.

Table 9 shows the cost (RMB/day) of five compared
algorithms for optimal power dispatch. The results of cost
of power consumption obtained by 5 different algorithms
are evaluated from 5 performance metrics: the best, median,
mean, and worst values, and the standard deviation in 30
independent runs. The number of iterations is set to 2000
in each independent run. Next, experimental results are
discussed from the following aspects.

(1) As presented in Table 9, EA-CSTA significantly
provides the best performance in terms of minimum
cost of power consumption compared with other
algorithms. For the other 4 performance metrics,
the values obtained by EA-CSTA are better than that
obtained by other algorithms, too. Therefore, it is not
easy to fall into local optimum by designing external
archive and preference trade-off strategy, which fully
maintain the diversity in the iterative process

(2) Compared with CSTA, a diversity mechanism is
added in EA-CSTA. In Table 9, the values of 5 perfor-
mance metrics obtained by EA-CSTA are better than
CSTA, which can verify the effectiveness of the pro-
posed external archive. In addition, the results
obtained by EA-CSTA are better than ATMES, which
can verify the validity of the proposed preference
trade-off strategy

Figure 6 shows the convergence curves of minimum cost
(RMB/day) over 2000 iterations for optimal power dispatch
problem in different algorithms. In Figure 6, a fast conver-
gence can be achieved by EA-CSTA in 300 iterations. A sub-
figure in Figure 6 illustrates the details among EA-CSTA,
HMPSO, and ATMES at the later stage of iteration. As seen
in the subfigure, the curve of ATMES vibrates up and down,
which means that it is hard to balance the constraints and
objective function of the power dispatch optimization prob-
lem. Therefore, EA-CSTA always has the extreme perfor-
mance of convergence and optimality.

5. Conclusions

In this paper, an external archive-based constrained state
transition algorithm (EA-CSTA) with preference trade-off
strategy was proposed for the power dispatch optimization
problem. The external archive was utilized to keep diversity
of potential solutions in the process of solving this problem,
while the preference trade-off strategy was designed for
selecting potential solutions. As the results show, EA-CSTA
not only solved almost all benchmark test functions well

Table 7: Statistical results obtained by EA-CSTA with Deb-penalty
technique for the optimal power dispatch.

Current density Value

Cd11, Cd21, Cd31 206.9061 566.8309 649.9998

Cd12, Cd22, Cd32 200.0079 643.6587 649.9994

Cd13, Cd23, Cd33 200.0001 611.4888 649.9994

Cd14, Cd24, Cd34 200.0415 555.8642 649.9987

Cd15, Cd25, Cd35 200.0733 506.6455 649.9999

Cd16, Cd26, Cd36 200.8771 545.8322 649.9998

Cd17, Cd27, Cd37 200.0007 638.6569 649.9984

G= 960 h(Cd) = 960.0008

Fc(Cd) 1.77913834E06

Table 8: Statistical results obtained by CSTA with Deb-penalty
technique for the optimal power dispatch.

Current density Value

Cd11, Cd21, Cd31 200.0000 649.6124 650.0000

Cd12, Cd22, Cd32 200.0000 649.9863 649.9999

Cd13, Cd23, Cd33 200.0000 649.9999 650.0000

Cd14, Cd24, Cd34 200.0000 311.9031 650.0000

Cd15, Cd25, Cd35 200.0000 523.2470 650.0000

Cd16, Cd26, Cd36 200.0000 650.0000 650.0000

Cd17, Cd27, Cd37 200.0000 649.7727 650.0000

G = 960 h(Cd) = 960.0039

Fc(Cd) 1.78178080E06

Table 6: Statistical results obtained by EA-CSTA with preference
trade-off strategy for the optimal power dispatch.

Current density Value

Cd11, Cd21, Cd31 200.0000 584.5866 650.0000

Cd12, Cd22, Cd32 200.0000 583.7330 649.9999

Cd13, Cd23, Cd33 200.0000 583.5669 650.0000

Cd14, Cd24, Cd34 200.0000 584.3070 650.0000

Cd15, Cd25, Cd35 200.0000 584.5311 650.0000

Cd16, Cd26, Cd36 200.0000 583.4249 650.0000

Cd17, Cd27, Cd37 200.0000 583.6394 650.0000

G = 960 h(Cd) = 960.0000

Fc(Cd) 1.77765823E06
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but also performed better than other algorithms in the litera-
ture in terms of the optimality of solution on the power dis-
patch optimization problem. The optima of the power
dispatch optimization problem can bring significant eco-
nomic profits to the metallurgy industry. In addition, it is
instructive to relieve the pressure not only on the power grid
but also on the peak power consuming of power industry.

In the future, the external archive and preference trade-
off strategy will be perfected. Moreover, we are considering
the possibility of applying the improved EA-CSTA with pref-
erence trade-off strategy to some optimization problems in
other fields.
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